On the Relation Between Remainder Set and Kernel

Márcio M. Ribeiro Renata Wassermann
Instituto de Matemática e Estatística
Universidade de São Paulo

May 7, 2008

Outline of Topics

(1) Belief Revision

- Introduction
- AGM Paradigm
(2) Belief Base
- Introduction
- Partial Meet Contraction
- Kernel Contraction
(3) Kernel vs Remainder Sets
- Minimal Cuts
- Conclusions and Future Work

Belief Revision

- Updating a Knowledge Base
- Expansion: Add new piece of knowledge
- Contraction: Remove a piece of knowledge
- Revision: Add a new piece of knowledge in a consistent way

Belief Revision

- Updating a Knowledge Base
- Expansion: Add new piece of knowledge
- Contraction: Remove a piece of knowledge
- Revision: Add a new piece of knowledge in a consistent way
- Separate the construction from the postulates
- Representation Theorem

Outline

AGM Paradigm

- Logically closed set (Belief Set)

Outline

AGM Paradigm

- Logically closed set (Belief Set)
- Expansion: $K+\alpha=C n(K \cup \alpha)$

AGM Paradigm

- Logically closed set (Belief Set)
- Expansion: $K+\alpha=C n(K \cup \alpha)$
- Contraction and revision defined by sets of postulates

Outline

Belief Base

- Not necessarally closed sets

Outline

Belief Base

- Not necessarally closed sets
- Expansion: $B+\alpha=B \cup\{\alpha\}$

Belief Base

- Not necessarally closed sets
- Expansion: $B+\alpha=B \cup\{\alpha\}$
- Contraction and revision defined by sets of postulates

Partial Meet Contraction

> Definition (Remainder Set)
> $B^{\prime} \in B \perp \alpha$ iff:
> - $B^{\prime} \subseteq B$
> - $\alpha \notin C n\left(B^{\prime}\right)$
> - If $B^{\prime} \subset B^{\prime \prime} \subseteq B$ then $\alpha \in \operatorname{Cn}\left(B^{\prime \prime}\right)$

Partial Meet Contraction

Definition (Remainder Set)

$B^{\prime} \in B \perp \alpha$ iff:

- $B^{\prime} \subseteq B$
- $\alpha \notin \operatorname{Cn}\left(B^{\prime}\right)$
- If $B^{\prime} \subset B^{\prime \prime} \subseteq B$ then $\alpha \in C n\left(B^{\prime \prime}\right)$

Definition (Selection Function)

A function γ is a selection function if it satisfies:

- $\emptyset \neq \gamma(B \perp \alpha) \subseteq B \perp \alpha$ if $B \perp \alpha \neq \emptyset$
- $\gamma(B \perp \alpha)=\{B\}$ otherwise

Partial Meet Contraction

Definition (Remainder Set)

$B^{\prime} \in B \perp \alpha$ iff:

- $B^{\prime} \subseteq B$
- $\alpha \notin \operatorname{Cn}\left(B^{\prime}\right)$
- If $B^{\prime} \subset B^{\prime \prime} \subseteq B$ then $\alpha \in C n\left(B^{\prime \prime}\right)$

Definition (Selection Function)

A function γ is a selection function if it satisfies:

- $\emptyset \neq \gamma(B \perp \alpha) \subseteq B \perp \alpha$ if $B \perp \alpha \neq \emptyset$
- $\gamma(B \perp \alpha)=\{B\}$ otherwise

Definition (Partial Meet Contraction)

$$
B-_{\gamma} \alpha=\bigcap \gamma(B \perp \alpha)
$$

Postulates for Partial Meet Contraction

Postulates for Partial Meet Contraction

- (success) $\alpha \notin \operatorname{Cn}(B-\alpha)$
- (inclusion) $B-\alpha \subseteq B$
- (relevance) If $\beta \in B \backslash B-\alpha$ then there is B^{\prime} such that $B-\alpha \subseteq B^{\prime} \subseteq B$ and $\alpha \notin C n\left(B^{\prime}\right)$, but $\alpha \in \operatorname{Cn}\left(B^{\prime} \cup \beta\right)$
- (uniformity) If for all subsets B^{\prime} of B it holds that $\alpha \in C n\left(B^{\prime}\right)$ iff $\beta \in C n\left(B^{\prime}\right)$ then $B-\alpha=B-\beta$.

Kernel Contraction

```
Definition (Kernel)
\(B^{\prime} \in B \Perp \alpha\) iff:
    - \(B^{\prime} \subseteq B\)
    - \(\alpha \in \operatorname{Cn}\left(B^{\prime}\right)\)
    - If \(B^{\prime \prime} \subset B^{\prime}\) then \(\alpha \notin B^{\prime \prime}\)
```


Kernel Contraction

Definition (Kernel)

$B^{\prime} \in B \Perp \alpha$ iff:

- $B^{\prime} \subseteq B$
- $\alpha \in \operatorname{Cn}\left(B^{\prime}\right)$
- If $B^{\prime \prime} \subset B^{\prime}$ then $\alpha \notin B^{\prime \prime}$

Definition (Incision Function)

A σ is an incision function if it satisfies:

- $\sigma(B \Perp \alpha) \subseteq \bigcup(B \Perp \alpha)$
- If $\emptyset \neq X \in B \Perp \alpha$ then $X \cap \sigma(B \Perp \alpha) \neq \emptyset$

Kernel Contraction

Definition (Kernel)

$B^{\prime} \in B \Perp \alpha$ iff:

- $B^{\prime} \subseteq B$
- $\alpha \in \operatorname{Cn}\left(B^{\prime}\right)$
- If $B^{\prime \prime} \subset B^{\prime}$ then $\alpha \notin B^{\prime \prime}$

Definition (Incision Function)

A σ is an incision function if it satisfies:

- $\sigma(B \Perp \alpha) \subseteq \bigcup(B \Perp \alpha)$
- If $\emptyset \neq X \in B \Perp \alpha$ then $X \cap \sigma(B \Perp \alpha) \neq \emptyset$

Definition (Kernel Contraction)

$B-{ }_{\sigma} \alpha=B \backslash \sigma(B \Perp \alpha)$

Postulates for Kernel Contraction

Postulates for Kernel Contraction

- (success) $\alpha \notin \operatorname{Cn}(B-\alpha)$
- (inclusion) $B-\alpha \subseteq B$
- (core-retainment) If $\beta \in B \backslash B-\alpha$ then there is B^{\prime} such that $B^{\prime} \subseteq B$ and $\alpha \notin \operatorname{Cn}\left(B^{\prime}\right)$, but $\alpha \in \operatorname{Cn}\left(B^{\prime} \cup \beta\right)$
- (uniformity) If for all subsets B^{\prime} of B it holds that $\alpha \in C n\left(B^{\prime}\right)$ iff $\beta \in C n\left(B^{\prime}\right)$ then $B-\alpha=B-\beta$.

Minimal Cuts

Definition (Cut)

A cut in a class of sets B is a set B^{\prime} that contains at least one element of each set

Minimal Cuts

Definition (Cut)

A cut in a class of sets B is a set B^{\prime} that contains at least one element of each set

Definition (Minimal Cut)

A minimal cut of B é a cut B^{\prime} of B such that there is no cut $B^{\prime \prime}$ of B that $B^{\prime \prime} \subset B^{\prime}$

Minimal Cuts

Definition (Cut)

A cut in a class of sets B is a set B^{\prime} that contains at least one element of each set

Definition (Minimal Cut)

A minimal cut of B é a cut B^{\prime} of B such that there is no cut $B^{\prime \prime}$ of B that $B^{\prime \prime} \subset B^{\prime}$

Theorem

$\beta \in B \perp \alpha$ iff there is a minimal cut β^{\prime} of $B \Perp \alpha$ and $\beta=B \backslash \beta^{\prime}$

Conclusions

- From the kernel we can find the remainder without further calls to the theorem prover

Conclusions

- From the kernel we can find the remainder without further calls to the theorem prover
- This result sugests that the kernel have at least the same amount of information as the remainder set (maybe more)

Conclusions

- From the kernel we can find the remainder without further calls to the theorem prover
- This result sugests that the kernel have at least the same amount of information as the remainder set (maybe more)
- Finding minimal cuts can be done with the well known Reiter's algorithm

Future Work

- Empirical tests:
- Is it better to find the remainder set from the kernel or find each of them separatly?

Future Work

- Empirical tests:
- Is it better to find the remainder set from the kernel or find each of them separatly?
- Is it faster to find the kernel or the remainder set?

Future Work

- Empirical tests:
- Is it better to find the remainder set from the kernel or find each of them separatly?
- Is it faster to find the kernel or the remainder set?
- Theoric work:
- Is it possible to find the kernel from the remainder set without using the theorem prover?

