On the Relation Between Remainder Set and Kernel

Márcio M. Ribeiro Renata Wassermann

Instituto de Matemática e Estatística Universidade de São Paulo

May 7, 2008

Outline of Topics

Belief Revision

- Introduction
- AGM Paradigm

2 Belief Base

- Introduction
- Partial Meet Contraction
- Kernel Contraction

3 Kernel vs Remainder Sets

- Minimal Cuts
- Conclusions and Future Work

Introduction AGM Paradigm

Belief Revision

- Updating a Knowledge Base
 - Expansion: Add new piece of knowledge
 - Contraction: Remove a piece of knowledge
 - Revision: Add a new piece of knowledge in a consistent way

Introduction AGM Paradigm

Belief Revision

- Updating a Knowledge Base
 - Expansion: Add new piece of knowledge
 - Contraction: Remove a piece of knowledge
 - Revision: Add a new piece of knowledge in a consistent way
- Separate the construction from the postulates
 - Representation Theorem

Introduction AGM Paradigm

AGM Paradigm

• Logically closed set (Belief Set)

Introduction AGM Paradigm

AGM Paradigm

- Logically closed set (Belief Set)
- Expansion: $K + \alpha = Cn(K \cup \alpha)$

Introduction AGM Paradigm

AGM Paradigm

- Logically closed set (Belief Set)
- Expansion: $K + \alpha = Cn(K \cup \alpha)$
- Contraction and revision defined by sets of postulates

Introduction Partial Meet Contraction Kernel Contraction

Belief Base

• Not necessarally closed sets

Introduction Partial Meet Contraction Kernel Contraction

Belief Base

- Not necessarally closed sets
- Expansion: $B + \alpha = B \cup \{\alpha\}$

Introduction Partial Meet Contraction Kernel Contraction

Belief Base

- Not necessarally closed sets
- Expansion: $B + \alpha = B \cup \{\alpha\}$
- Contraction and revision defined by sets of postulates

Introduction Partial Meet Contraction Kernel Contraction

Partial Meet Contraction

Definition (Remainder Set)

- $B' \in B \perp \alpha$ iff:
 - $B' \subseteq B$
 - $\alpha \notin Cn(B')$
 - If $B' \subset B'' \subseteq B$ then $\alpha \in Cn(B'')$

Introduction Partial Meet Contraction Kernel Contraction

Partial Meet Contraction

Definition (Remainder Set)

- $B' \in B \perp \alpha$ iff:
 - $B' \subseteq B$
 - $\alpha \notin Cn(B')$
 - If $B' \subset B'' \subseteq B$ then $\alpha \in Cn(B'')$

Definition (Selection Function)

A function γ is a selection function if it satisfies:

•
$$\emptyset \neq \gamma(B \perp \alpha) \subseteq B \perp \alpha \text{ if } B \perp \alpha \neq \emptyset$$

• $\gamma(B \perp \alpha) = \{B\}$ otherwise

Introduction Partial Meet Contraction Kernel Contraction

Partial Meet Contraction

Definition (Remainder Set)

- $B' \in B \perp \alpha$ iff:
 - $B' \subseteq B$
 - $\alpha \notin Cn(B')$
 - If $B' \subset B'' \subseteq B$ then $\alpha \in Cn(B'')$

Definition (Selection Function)

A function γ is a selection function if it satisfies:

- $\emptyset \neq \gamma(B \perp \alpha) \subseteq B \perp \alpha$ if $B \perp \alpha \neq \emptyset$
- $\gamma(B \perp \alpha) = \{B\}$ otherwise

Definition (Partial Meet Contraction)

 $B -_{\gamma} \alpha = \bigcap \gamma(B \perp \alpha)$

Márcio M. Ribeiro, Renata Wassermann

On the Relation Between Remainder Set and Kernel

Introduction Partial Meet Contraction Kernel Contraction

Postulates for Partial Meet Contraction

Postulates for Partial Meet Contraction

- (success) $\alpha \notin Cn(B \alpha)$
- (inclusion) $B \alpha \subseteq B$
- (relevance) If $\beta \in B \setminus B \alpha$ then there is B' such that $B \alpha \subseteq B' \subseteq B$ and $\alpha \notin Cn(B')$, but $\alpha \in Cn(B' \cup \beta)$
- (uniformity) If for all subsets B' of B it holds that $\alpha \in Cn(B')$ iff $\beta \in Cn(B')$ then $B \alpha = B \beta$.

Introduction Partial Meet Contraction Kernel Contraction

Kernel Contraction

Definition (Kernel)

- $B' \in B \perp \!\!\!\perp \alpha$ iff:
 - $B' \subseteq B$
 - $\alpha \in Cn(B')$
 - If $B'' \subset B'$ then $\alpha \notin B''$

Introduction Partial Meet Contraction Kernel Contraction

Kernel Contraction

Definition (Kernel)

- $B' \in B \perp \!\!\!\perp \alpha$ iff:
 - $B' \subseteq B$
 - $\alpha \in Cn(B')$
 - If $B'' \subset B'$ then $\alpha \notin B''$

Definition (Incision Function)

A σ is an incision function if it satisfies:

- $\sigma(B \perp\!\!\!\perp \alpha) \subseteq \bigcup (B \perp\!\!\!\perp \alpha)$
- If $\emptyset \neq X \in B \perp \!\!\!\perp \alpha$ then $X \cap \sigma(B \perp \!\!\!\perp \alpha) \neq \emptyset$

Introduction Partial Meet Contraction Kernel Contraction

Kernel Contraction

Definition (Kernel)

- $B' \in B \perp\!\!\!\perp \alpha$ iff:
 - $B' \subseteq B$
 - $\alpha \in Cn(B')$
 - If $B'' \subset B'$ then $\alpha \notin B''$

Definition (Incision Function)

A σ is an incision function if it satisfies:

- $\sigma(B \perp\!\!\!\perp \alpha) \subseteq \bigcup (B \perp\!\!\!\perp \alpha)$
- If $\emptyset \neq X \in B \perp \!\!\!\perp \alpha$ then $X \cap \sigma(B \perp \!\!\!\perp \alpha) \neq \emptyset$

Definition (Kernel Contraction)

$$B -_{\sigma} \alpha = B \setminus \sigma(B \perp \!\!\!\perp \alpha)$$

Márcio M. Ribeiro, Renata Wassermann

On the Relation Between Remainder Set and Kernel

Introduction Partial Meet Contraction Kernel Contraction

Postulates for Kernel Contraction

Postulates for Kernel Contraction

- (success) $\alpha \notin Cn(B \alpha)$
- (inclusion) $B \alpha \subseteq B$
- (core-retainment) If $\beta \in B \setminus B \alpha$ then there is B' such that $B' \subseteq B$ and $\alpha \notin Cn(B')$, but $\alpha \in Cn(B' \cup \beta)$
- (uniformity) If for all subsets B' of B it holds that $\alpha \in Cn(B')$ iff $\beta \in Cn(B')$ then $B \alpha = B \beta$.

Minimal Cuts Conclusions and Future Work

Minimal Cuts

Definition (Cut)

A **cut** in a class of sets B is a set B' that contains at least one element of each set

Minimal Cuts Conclusions and Future Work

Minimal Cuts

Definition (Cut)

A **cut** in a class of sets B is a set B' that contains at least one element of each set

Definition (Minimal Cut)

A **minimal cut** of *B* é a cut *B'* of *B* such that there is no cut *B''* of *B* that $B'' \subset B'$

Minimal Cuts Conclusions and Future Work

Minimal Cuts

Definition (Cut)

A **cut** in a class of sets B is a set B' that contains at least one element of each set

Definition (Minimal Cut)

A **minimal cut** of *B* é a cut *B'* of *B* such that there is no cut *B''* of *B* that $B'' \subset B'$

Theorem

 $\beta \in B \perp \alpha$ iff there is a minimal cut β' of $B \perp \!\!\!\perp \alpha$ and $\beta = B \setminus \beta'$

Minimal Cuts Conclusions and Future Work

Conclusions

• From the kernel we can find the remainder without further calls to the theorem prover

Minimal Cuts Conclusions and Future Work

Conclusions

- From the kernel we can find the remainder without further calls to the theorem prover
- This result sugests that the kernel have at least the same amount of information as the remainder set (maybe more)

Minimal Cuts Conclusions and Future Work

Conclusions

- From the kernel we can find the remainder without further calls to the theorem prover
- This result sugests that the kernel have at least the same amount of information as the remainder set (maybe more)
- Finding minimal cuts can be done with the well known Reiter's algorithm

Minimal Cuts Conclusions and Future Work

Future Work

- Empirical tests:
 - Is it better to find the remainder set from the kernel or find each of them separatly?

Minimal Cuts Conclusions and Future Work

Future Work

- Empirical tests:
 - Is it better to find the remainder set from the kernel or find each of them separatly?
 - Is it faster to find the kernel or the remainder set?

Minimal Cuts Conclusions and Future Work

Future Work

- Empirical tests:
 - Is it better to find the remainder set from the kernel or find each of them separatly?
 - Is it faster to find the kernel or the remainder set?
- Theoric work:
 - Is it possible to find the kernel from the remainder set without using the theorem prover?