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Abstract

There are two main constructions for contraction in belief bases:
partial meet contraction (that depends on the remainder set of the
base) and kernel contraction (that depends on the kernel of the base).
It is well known that kernel contraction is more general than partial
meet contraction.

What is shown in the paper is a way to derive the whole remainder
set from the kernel without further calls to a theorem prover. This
result shows that finding the kernel of a base is at least as difficult as
finding the remainder set of the same base.

1 Introduction

Belief revision deals with the problem of accomodating new information in
an existing body of beliefs. When dealing with finite belief bases, there
are two main constructions that are in a sense dual of each other: partial
meet and kernel constructions. Partial meet constructions were proposed
by Alchourrn and Makinson [AM82] and depend on finding the maximal
subsets of the belief base that do not imply a given formula (the remainder
set of the base). Kernel constructions were proposed by Hansson [Han94] as
a generalization of safe contraction [AM85] and rely on finding the minimal
subsets of the belief base that imply a given formula (the kernel of the base).

Because kernel constructions deal with minimal sets, it has sometimes
been implicitly assumed that from the computational point of view they
were more efficient than partial meet, that depend on finding maximal sets.
In this paper we show a way of deriving the remainder set of a base B and
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a formula α from the kernel of B and α without calling a theorem prover.
This result sugests that finding the remainder set of a base B is at least as
easy as finding the kernel of B.

The paper is organized as follows: first we define partial meet contraction
and remainder sets and present some properties of this type of contraction.
Then kernel and kernel contraction are defined and we present some proper-
ties of this type of contraction too. The next section shows how to find the
remainder set from the kernel without further calls to the theorem prover.
Last we conclude and discuss future work.

2 Partial Meet Contraction

The idea of partial meet contraction is that if we want to give up a belief α
from a belief base B, then we can look at the maximal subsets of B that do
not imply α and take the intersection of some of them. The sets are selected
by a selection function.

The remainder set of B and α (B⊥α) is the set of maximal subsets of B
that do not imply α. Formally:

Definition 2.1 (Remainder Set) B′ ∈ B⊥α iff B′ ⊆ B, α /∈ Cn(B′)
and B′ ⊂ B′′ implies that α ∈ Cn(B′′)

Partial meet contraction (B−̇γα) is defined as the intersection of at least
one element (selected by γ) of the remainder set of B and α.

Definition 2.2 (Partial Meet Contraction) B−̇γα = γ
⋂

(B⊥α) where
the selection function function γ must satisfy: (i) ∅ 6= γ(B⊥α) ⊆ B⊥α if
B⊥α 6= ∅ and (ii) γ(B⊥α) = {B} otherwise.

The representation theorem for partial meet contraction shows which
properties fully characterise the contraction:

Theorem 2.3 [Han92] An operation B−̇α is a partial meet contraction iff
it satisfies:

success: α /∈ B−̇α

inclusion: B−̇α ⊆ B

uniformity: For all subsets B′ of B it holds that α ∈ Cn(B′) iff β ∈
Cn(B′) then B−̇α = B−̇β.

relevance: If β ∈ B and β /∈ B−̇α, then there is B′ such B−̇α ⊆ B′ ⊆ B
and α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β}).
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3 Kernel Contraction

The construction of kernel contraction consists in finding the minimal sub-
sets of the belief base that imply the formula being contracted and then
removing at least one element of each of these subsets.

The kernel of B and α is the minimal subset of B that implies α. For-
mally:

Definition 3.1 (Kernel) B′ ∈ B ⊥⊥α iff B′ ⊆ B, α ∈ Cn(B′) and B′′ ⊂
B′ implies that α /∈ Cn(B′′)

The kernel contraction B−̇σα is defined choosing (with an incision func-
tion σ) at least one element of each kernel of B and α and taking it out of
B.

Definition 3.2 (Kernel Contraction) B−̇σα = B \σ(B ⊥⊥α) where the
incision function σ must satisfy: (i) σ(B ⊥⊥α) ⊆

⋃
(B ⊥⊥α) and (ii) if

∅ 6= X ∈ B ⊥⊥α then X ∩ σ(B ⊥⊥α) 6= ∅

Kernel contraction does not satisfy the relevance postulate, but only a
weaker postulate called core-retainment. In fact, the operation is character-
ized by success, inclusion, uniformity, and core-retainment:

Theorem 3.3 [Han94] An operation B−̇α is a kernel contraction iff it sat-
isfies:

success: α /∈ B−̇α

inclusion: B−̇α ⊆ B

uniformity: For all subsets B′ of B it holds that α ∈ Cn(B′) iff β ∈
Cn(B′) then B−̇α = B−̇β.

core-retainment: If β ∈ B e β /∈ B−̇α, then there is B′ such B′ ⊆ B
and α /∈ B′, but α ∈ Cn(B′ ∪ {β}).

It is easy to see that every operation that satisfies relevance also satisfies
core-retainment. However, the converse is not true [Han97].

One interesting corollary of this property is that every partial meet con-
traction is a kernel contraction, but not the other way round.
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4 Obtaining Remainders from the Kernel Set

What we are going to show in this section is that once we have the kernel of
a set B, we can derive the remainder set of B without calling the theorem
prover.

The main idea is that we can obtain each maximal subset of B that does
not imply α as B \X where X is a minimal incision function for B and α.

Definition 4.1 (Minimal Incision Function) σ(B ⊥⊥α) is a minimal in-
cision function iff there is no other incision function σ′(B ⊥⊥α) such that
σ′(B ⊥⊥α) ⊂ σ(B ⊥⊥α)

Theorem 4.2 B⊥α = {B \X|X is a minimal incision function}

The minimal incision functions of B can be obtained from the kernel of
B using any algorithm for finding minimal hitting sets [Rei87, GSW89], as
was shown in [Was00].

Although the complexity of the hitting set problem being NP-complete
[FV04], it can be less than the complexity of the theorem prover, depending
on which logic is being used. Furthermore, once the kernel is obtained the
remainder set can be derived whitout any further calls to the theorem prover.

As far as we know there is no proof that one can obtain the remainder
set from the kernel without making further calls to the theorem prover. The
closest work in the literature in this direction is [FFKI06] that shows how to
find a selection function from an incision function and vice-versa, but what
we wanted is to find the whole kernel from the remainder set (like we can
find the whole remainder set from the kernel). In fact we believe that this
is not possible.

5 Conclusions and Future Work

The results presented here showed that the minimal numbers of calls to the
theorem prover to find the remainder set of a set B is less or equal than
the number of calls to the theorem prover to find the kernel of B. In other
words, the problem of finding the kernel of B is at least as difficult as the
problem of finding the remainder of B. This result suggests that finding
the remainder set can be easier than finding the kernel but not the other
way round. This suspect was confirmed by some preliminary experimental
results.

Future work includes exploring ways to derive kernels from remainder
sets and improving and further testing the implementation.
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